

yMMSL Python bindings

Welcome to the documentation pages for yMMSL, the YAML version of the Multiscale
Modeling and Simulation Language. At the moment, yMMSL is mainly the
configuration language for the MUSCLE3 multiscale coupling library.

This library provides Python bindings for yMMSL. With it, you can read and write
yMMSL files, and manipulate them using a Python object representation of their
contents. This documentation gives an overview of the format, and a description
of the Python API.

Contents:

	Overview
	Installation

	Reading yMMSL files

	Writing yMMSL files

	Usage
	Models

	Settings

	Implementations

	Resources

	Checkpoints

	Examples

API Reference

	API reference

Indices and tables

	Index

	Module Index

	Search Page

Overview

A yMMSL file is a YAML file that looks approximately like this:

docs/example.ymmsl

ymmsl_version: v0.1

model:
 name: macro_micro_model
 components:
 macro: my.macro_model
 micro: my.micro_model
 conduits:
 macro.state_out: micro.init_in
 micro.final_out: macro.update_in

settings:
 # Scales
 domain._muscle_grain: 0.01
 domain._muscle_extent: 1.0
 macro._muscle_timestep: 10.0
 macro._muscle_total_time: 1000.0
 micro._muscle_timestep: 0.01
 micro._muscle_total_time: 1.0

 # Global settings
 k: 1.0
 interpolation_method: linear

 # Submodel-specific setting
 micro.d: 2.3

implementations:
 my.macro_model:
 executable: /home/user/model
 my.micro_model:
 modules: gcc openmpi
 execution_model: openmpi
 executable: /home/user/model2

resources:
 macro:
 threads: 1
 micro:
 mpi_processes: 8

checkpoints:
 at_end: true
 simulation_time:
 - every: 50

This file describes a macro-micro coupled simulation model with time-scale
separation and domain overlap. It describes both the model itself and an
experiment to be run with this model, and contains the minimal information
needed for MUSCLE 3 to be able to coordinate model execution. We’ll go into
more detail on this file in a moment.

The yMMSL YAML format is supported by the ymmsl-python library, whose
documentation you are currently reading. This library lets you read and write
yMMSL files, and manipulate their contents using an object-based Python API.

Installation

ymmsl-python is on PyPI, so you can install it using Pip:

pip install ymmsl

or you can add it to your dependencies as usual, e.g. in your setup.py or
your requirements.txt, depending on how you’ve set up your project.

Reading yMMSL files

Here is an example of loading a yMMSL file:

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

This makes config an object of type ymmsl.Configuration, which is
the top-level class describing a yMMSL document. More on these objects in the
next section. The ymmsl.load() function can also load from an open file
or from a string containing YAML data.

If the file is valid YAML, but not recognized as a yMMSL file, the library will
raise a ymmsl.RecognitionError with a message describing in detail what
is wrong, so that you can easily fix the file.

Note that the ymmsl.load() function uses the safe loading functionality
of the underlying YAML library, so you can safely load files from untrusted
sources.

Writing yMMSL files

To write a yMMSL file with the contents of a ymmsl.Configuration, we
use ymmsl.save:

from pathlib import Path
from ymmsl import Component, Configuration, Model, Settings

model = Model('test_model', [Component('macro')])
settings = Settings(OrderedDict([('test_parameter', 42)]))
config = Configuration(model, settings)

ymmsl.save(config, Path('out.ymmsl'))

Here, we create a model named test_model, containing a single component
named macro, and no conduits. For the settings, we create a Settings
object, which is a container for an ordered dictionary of settings. Note that
normal Python dictionaries are unordered, which is why YAML documents saved
from Python are often in a random order and hard to read. We avoid that problem
in yMMSL by using an OrderedDict here. You have to pass it a list of
tuples, because using dictionary syntax with curly brackets will lose the
ordering.

Finally, we combine the model and the settings into a
yammsl.Configuration object, which we then save to a file. If you
want to have the YAML as a string, use ymmsl.dump() instead.

As the format may develop over time, files are required to carry a version, in
this case v0.1, which is currently the only version of yMMSL.

When you read in a yMMSL file as described above, you get a collection of Python
objects describing its contents. The next section explains how those work.

Usage

As shown on the previous page, the ymmsl-python library converts yMMSL from
YAML to Python objects and back. Here, we dive into this a bit deeper and see
how those Python objects can be used.

Generally speaking, the object model used by the ymmsl library follows the
structure of the YAML document, but there are a few places where some syntactic
sugar has been added to make the files easier to read and write by hand. Let’s
have a look at the example again:

docs/example.ymmsl

ymmsl_version: v0.1

model:
 name: macro_micro_model
 components:
 macro: my.macro_model
 micro: my.micro_model
 conduits:
 macro.state_out: micro.init_in
 micro.final_out: macro.update_in

settings:
 # Scales
 domain._muscle_grain: 0.01
 domain._muscle_extent: 1.0
 macro._muscle_timestep: 10.0
 macro._muscle_total_time: 1000.0
 micro._muscle_timestep: 0.01
 micro._muscle_total_time: 1.0

 # Global settings
 k: 1.0
 interpolation_method: linear

 # Submodel-specific setting
 micro.d: 2.3

implementations:
 my.macro_model:
 executable: /home/user/model
 my.micro_model:
 modules: gcc openmpi
 execution_model: openmpi
 executable: /home/user/model2

resources:
 macro:
 threads: 1
 micro:
 mpi_processes: 8

checkpoints:
 at_end: true
 simulation_time:
 - every: 50

If you read this into a variable named config, then config will contain
an object of type ymmsl.Configuration. The yMMSL file above is a nested
dictionary (or mapping, in YAML terms) with at the top level the keys
ymmsl_version, model and settings. The ymmsl_version key is
handled internally by the library, so it does not show up in the
ymmsl.Configuration object. The others, model and settings are
loaded into attributes of config.

Note that settings is optional: if it is not given in the YAML file, the
corresponding attribute will be an empty ymmsl.Settings object.
Likewise, when saving an empty ymmsl.Configuration, the settings
section will be omitted.

As a result, config.model will give you an object representing the model
part of the file, while config.settings contains an object with the
settings in it. ymmsl.Configuration is just a simple record that holds
the two parts together, so this is all it can do.

Models

The model section of the yMMSL document describes the simulation model. It
has the model’s name, a list of simulation components, and it describes the
conduits between those components. (Simulation) components are submodels, scale
bridges, mappers, proxies, and any other program that makes up the coupled
simulation. Conduits are the wires between them that are used to exchange
messages.

The model section is represented in Python by the ymmsl.Model
class. It has attributes name, components and conduits
corresponding to those sections in the file. Attribute name is an
ymmsl.Identifier object.

Note that conduits are optional, you may have a model that consists of only one
component and no conduits at all. In YAML, you can write this by omitting the
conduits attribute. In Python, you can also omit the conduits argument when
constructing a Model. In both cases, the conduits attribute will be an empty
list.

Accessing the model

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

print(config.model.name) # output: macro_micro_model
print(len(config.model.components)) # output: 2

An identifier contains the name of an object, like a simulation model,
a component or a port (see below). It is a string containing letters,
digits, and/or underscores which must start with a letter or underscore, and may
not be empty. Identifiers starting with an underscore are reserved for use by
the software (e.g. MUSCLE3), and may only be used as specified by the software
you are using.

The ymmsl.Identifier Python class represents an identifier. It works
almost the same as a normal Python str, but checks that the string it
contains is actually a valid identifier.

Simulation Components

The model section contains a subsection components, in which the
components making up the simulation are described. These are the
submodels, and special components like scale bridges, data converters, load
balancers, etc. yMMSL lets you describe components in two ways, a short
one and a longer one:

Macro-meso-micro model components

components:
 macro: my.macro_model
 meso:
 ports:
 f_init: boundary_in
 o_i: state_out
 s: state_in
 o_f: boundary_out
 implementation: my.meso_model
 multiplicity: 5
 micro:
 implementation: my.micro_model
 multiplicity: [5, 10]

This fragment describes a macro-meso-micro model set-up with a single macro
model instance, five instances of the meso model, and five sets of ten micro
model instances each. If the simulation requires only a single instance of a
component, the short form can be used, as above for the macro component. It
simply maps the name of the component to an implementation (more on those
in a moment).

The longer form maps the name of the component to a dictionary containing
three attributes: the ports, the implementation and the
multiplicity. Ports are the connectors on the component to which conduits
attach to connect it to other components. These are organised by operator; we
refer to the MUSCLE3 documentation for more on how they are used. Specifying
ports here is optional, but doing so can improve efficiency.

The implementation is the name of the implementation as in the short form, while
the multiplicity specifies how many instances of this component exist in the
simulation. Multiplicity is a list of integers (as for micro in this
example), but may be written as a single integer if it’s a one-dimensional set
(as for meso).

All this is a concise and easy to read and write a YAML file, but on the Python
side, all this flexibility would make for complex code. To avoid that, the
ymmsl-python library applies syntactic sugar when converting between YAML and
Python. On the Python side, the components attribute of
ymmsl.Model always contains a list of ymmsl.Component
objects, regardless of how the YAML file was written. When this list is written
to a YAML file, the most concise representation is automatically chosen to make
the file easier to read by a human user.

Accessing the simulation components

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('macro_meso_micro.ymmsl'))

cps = config.model.components
print(cps[0].name) # output: macro
print(cps[0].implementation) # output: my.macro_model
print(cps[0].multiplicity) # output: []
print(cps[2].name) # output: micro
print(cps[2].implementation) # output: my.micro_model
print(cps[2].multplicity) # output: [5, 10]

(Note that macro_meso_micro.ymmsl does not come with this documentation, go
ahead and make it yourself using the above listing!)

The ymmsl.Component class has four attributes, unsurprisingly
named name, implementation, multiplicity and ports. Attributes
name and implementation are of type ymmsl.Reference. A
reference is a string consisting of one or more identifiers (as described
above), separated by periods.

Depending on the context, this may represent a name in a namespace (as it is
here), or an attribute of an object (as we will see below with Conduits). The
multiplicity attribute is always a list of ints, but may be omitted or
given as a single int when creating a ymmsl.Component object, just
like in the YAML file.

The implementation attribute of ymmsl.Component refers to an
implementation definition. More on those below.

Conduits

The final subsection of the model section is labeled conduits. Conduits
tie the components together by connecting ports on those components. Which
ports a component has depends on the component, so you have to look at its
documentation (or the source code, if there isn’t any documentation) to see
which ports are available and how they should be used.

As you can see, the conduits are written as a dictionary on the YAML
side, which maps senders to receivers. A sender consists of the name of a
component, followed by a period and the name of a port on that component;
likewise for a receiver. In the YAML file, the sender is always on the left of
the colon, the receiver on the right.

Just like the simulation components, the conduits get converted to a list in
Python, in this case containing ymmsl.Conduit objects. The
ymmsl.Conduit class has sender and receiver attributes, of
type ymmsl.Reference (see above), and a number of helper functions to
interpret these fields, e.g. to extract the component and port name parts.
Note that the format allows specifying a slot here, but this is currently not
supported and illegal in MUSCLE3.

Multicast conduits

In yMMSL you can specify that an output port is connected to multiple input
ports. When a message is sent on the output port, it is copied and delivered to
all connected input ports. This is called multicast and is expressed as
follows:

Specifying multicast in yMMSL

conduits:
 sender.port:
 - receiver1.port
 - receiver2.port

This multicast conduit is converted to a a list of conduits sharing the same
sender:

Multicast conduits in python code

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('multicast.ymmsl'))

conduits = config.model.conduits
print(len(conduits)) # output: 2
print(conduits[0]) # output: Conduit(sender.port -> receiver1.port)
print(conduits[1]) # output: Conduit(sender.port -> receiver2.port)

Settings

The settings section contains settings for the simulation to run with. In YAML,
this is a dictionary that maps a setting name (a
ymmsl.Reference) to its value. Parameter values may be strings,
integers, floating point numbers, lists of floating point numbers (vectors), or
lists of lists of floating point numbers (arrays).

Settings example

settings:
 domain.grain: 0.01
 domain.extent.x: 1.0
 domain.extent.y: 1.0
 macro.timestep: 10.0
 macro.total_time: 1000.0
 micro.timestep: 0.01
 micro.total_time: 1.0

 interpolate: true
 interpolation_method: linear
 kernel:
 - [0.8, 0.2]
 - [0.2, 0.8]

In this example, there is a macro-micro model in which the two models share a
one-dimensional domain, which is named domain, has a length and width of 1.0,
and a grid spacing of 0.01. The macro model has a time step of 10 and a total
run time of 1000 (so it will run for 100 steps), while the micro model has a
time step of 0.01 and a total run time of 1.0. Furthermore, there are some other
model settings, a boolean switch that enables interpolation, a string to select
the interpolation method, and a 2D array specifying a kernel of some kind.

On the Python side, this will be turned into a ymmsl.Settings object,
which acts much like a Python dictionary. So for instance, if you have a
ymmsl.Configuration object named config which was loaded from a
file containing the above settings section, then you could write:

grid_dx = config.settings['domain.grain']
kernel = config.settings['kernel']

to obtain a floating point value of 0.1 in grid_dx and a list of lists
[[0.8, 0.2], [0.2, 0.8]] in kernel.

Implementations

Components are abstract objects. For an actual simulation to run, we need
computer programs that implement the components of the simulation. As we’ve seen
above, components refer to implementations, and those implementations are
defined in the implementations section of the yMMSL file:

Defining implementations

implementations:
 simplest:
 executable: /home/user/models/my_model

 python_script:
 virtual_env: /home/user/envs/my_env
 executable: python3
 args: /home/user/models/my_model.py

 with_env_and_args:
 env:
 LD_LIBRARY_PATH: /home/user/muscle3/lib
 ENABLE_AWESOME_SCIENCE: 1
 executable: /home/user/models/my_model
 args:
 - --some-lengthy-option
 - --some-other-lengthy-option=some-lengthy-value

As you can see, there are quite a few different ways of describing an
implementation, but all implementations have a name, which is the key in the
dictionary, by which a component can refer to it.

The simplest implementation only has an executable. This could be a
(probably statically linked) executable, or a script that sets up an environment
and starts the model.

If your model or other component is a Python script, then you may want to load a
virtual environment before starting it, to make the dependencies available. This
is done using the virtual_env attribute. If the script does not have a
#!/usr/bin/env python line at the top (in which case you could set it as the
executable) then you need to start the Python interpreter directly, and pass the
location of the script as an argument.

Environment variables can be set through the env attribute, which contains a
dictionary mapping variable names to values, as shown for the
with_env_and_args example. This also shows that you can pass the arguments
as a list, if that makes things easier to read.

MPI and HPC implementations

implementations:
 mpi_implementation:
 executable: /home/user/models/my_model
 execution_model: openmpi

 on_hpc_cluster:
 modules: cpp openmpi
 executable: /home/user/models/my_model
 execution_model: intelmpi

 with_script:
 script: |
 #!/bin/bash

 . /home/user/muscle3/bin/muscle3.env
 export ENABLE_AWESOME_SCIENCE=1

 /home/user/models/my_model -v -x

MPI programs are a bit special, as they need to be started via mpirun.
However, mpirun assumes that the program to start is going to use all of the
available resources. For a coupled simulation with multiple components, that is
usually not what you want. It is possible to tell mpirun to only use some of
the resources, but of course we don’t know which ones will be available while
writing this file. Instead, you simply specify the path to the executable, and
set the execution_model attribute to either openmpi or intelmpi as
required. When executing with MUSCLE3, the MUSCLE Manager will then start the
component on its designated subset of the resources as required.

The on_hpc_cluster implementation demonstrates loading environment modules,
as commonly needed on HPC machines. They’re all in one line here, but if the
modules have long names, then like with the arguments you can make a list to
keep things readable.

Finally, if you need to do something complicated, you can write an inline script
to start the implementation. This currently only works for non-MPI programs
however.

Keeps state for next use

Implementations may indicate if they carry state between reuses. This is
currently only used for checkpoints, but might see further
use in the future (e.g. for load balancers). There are three possible values
an implementation may indicate.

	Necessary

	This implementation remembers state between consecutive iterations of the
reuse loop. That state is required for the proper execution of the
implementation.

This is the default value when not specified.

Example: A micro model simulating an enclosed volume, where every reuse
the boundary conditions are updated by the connected macro model. This micro
model must keep track of the state inside the simulated volume between
iterations of the reuse loop.

	No

	This implementation has no state between consecutive iterations of the reuse
loop.

Example: A data converter that receives on an F_INIT port, transforms
the data and outputs it on an O_F port. The transformation is only
dependent on the information of the F_INIT message.

	Helpful

	This implementation remembers state between consecutive iterations of the
reuse loop. However, this state is not required for proper execution.

Example: A simulation of a fluid in a pipe with obstacles. The simulation
converges much faster when starting from the solution of the previous
iteration. However, the same solution can still be found when starting from
scratch.

Resources

Finally, yMMSL allows specifying the amount of resources needed to run an
instance of an implementation. This information is used by MUSCLE3 when it
starts each component, to ensure it has the resources needed to do its
calculations. Currently, only the number of threads or processes can be
specified; memory and GPUs are future work.

Resources are specified per component, and apply to each instance of that
component. For single- or multithreaded components, or components that use
multiple local processes (for example with Python’s multiprocessing), you
specify the number of threads:

Resources for threaded processes

resources:
 macro:
 threads: 1

 micro:
 threads: 8

On the Python side, this is represented by ymmsl.ThreadedResReq (short
for ThreadedResourceRequirements), which holds the name of the component it
specifies the resources for in attribute name, and the number of threads or
processes (basically, cores) as threads.

For MPI-based implementations, there are two different ways of specifying the
required resources: core-based and node-based. For core-based resource
requirements (ymmsl.MPICoresResReq on the Python side), you specify the
number of MPI processes, and optionally the number of threads per MPI process:

Core-based resources for MPI components

resources:
 macro:
 mpi_processes: 32
 micro:
 mpi_processes: 16
 threads_per_mpi_process: 8

On HPC, this allocates each MPI process individually.

Node-based MPI allocations are not yet supported by MUSCLE3, but you can
already specify them as follows:

Node-based resources for MPI components

resources:
 macro:
 nodes: 8
 mpi_processes_per_node: 4
 threads_per_mpi_process: 8
 micro:
 nodes: 1
 mpi_processes_per_node: 16

Here, whole nodes are assigned to the implementation, with a specific number of
MPI processes started on each node, and optionally (the default is one) a
certain number of cores per process made available.

More information on how this is interpreted and how MUSCLE3 allocates resources
based on this can be found in the High-Performance
Computing section in the MUSCLE3 documentation [https://muscle3.readthedocs.io/en/latest/distributed_execution.html#high-performance-computing].

Checkpoints

In yMMSL you can specify if you expect the workflow to create checkpoints. Note
that all implementations in your workflow must support checkpointing, MUSCLE3
will generate an error for you otherwise. See the documentation for MUSCLE3 [https://muscle3.readthedocs.io/en/latest/] on checkpointing for details on
enabling checkpointing for an implementation.

Checkpoint triggers

In yMMSL you have three possible checkpoint triggers:

	at_end

	Create a checkpoint just before the instance shuts down. This can be a useful
checkpoint if you intend to resume the workflow at some later point, e.g.
when you wish to simulate a longer time span. This trigger is either on or
off, specified with a boolean true or false (default) in the
configuration.

	simulation_time

	Create checkpoints based on the passed simulation time. This can only work
properly if there is a shared concept of simulated time in the workflow.

	wallclock_time

	Create checkpoints based on the passed wall clock time (also called elapsed
real time [https://en.wikipedia.org/wiki/Elapsed_real_time]). This method
is not perfect and may result in missed checkpoints in certain coupling
scenarios. See the MUSCLE3 documentation for a discussion of the limitations.

When you use any of the time-based triggers, you must also specify at what
moments a checkpoint is expected. MUSCLE3 will then snapshot as soon as
possible after reaching the specified times. You may indicate specific
moments with at-rules, but can also create repetitive checkpoints.

Example checkpoint definition

checkpoints:
 at_end: true
 simulation_time:
 - at: [1.2, 1.4]
 - every: 1
 wallclock_time:
 - every: 60
 stop: 600
 - every: 600
 start: 600
 stop: 3600
 - every: 1800
 start: 3600

Above example demonstrates all possible checkpoint options. The workflow will
create checkpoints:

	At the end: at_end: true.

	Every second of passed simulated time (t=0,1,2,...), and additionally at
t=1.2 and t=1.4.

	Every minute of real elapsed time, for the first 10 minutes; then every 10
minutes for the remainder of the first hour; then every 30 minutes until the
end.

See the API documentation for CheckpointRangeRule for more
details on the behaviour of the repetitive checkpoints.

Examples

All the classes mentioned here are normal Python classes. They have constructors
which you can use to create instances, and their attributes can be changed as
needed.

Here are a few examples:

Creating a Configuration and saving it

from pathlib import Path
import ymmsl

components = [
 ymmsl.Component('macro', 'my.macro_model'),
 ymmsl.Component('micro', 'my.micro_model')]

conduits = [
 ymmsl.Conduit('macro.out', 'micro.in'),
 ymmsl.Conduit('micro.out', 'macro.in')]

model = ymmsl.Model('my_model', components, conduits)

implementations = [
 ymmsl.Implementation(
 'my.macro_model', executable='/home/user/model'),
 ymmsl.Implementation(
 'my.micro_model', modules='gcc openmpi',
 execution_model=ymmsl.ExecutionModel.OPENMPI)]

resources = [
 ymmsl.ThreadedResReq(1),
 ymmsl.MPICoresResReq(8)]

config = ymmsl.Configuration(model, implementations, resources)

ymmsl.save(config, Path('out.ymmsl'))

Will produce:
ymmsl_version: v0.1
model:
name: my_model
components:
macro: my.macro_model
micro: my.micro_model
conduits:
macro.out: micro.in
micro.out: macro.in
implementations:
my.macro_model:
executable: /home/user/model
my.micro_model:
modules: gcc openmpi
execution_model: openmpi
resources:
macro:
threads: 1
micro:
mpi_processes: 8

Adding or changing a setting

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

config.settings['d'] = 0.12

ymmsl.save(config, Path('out.ymmsl'))

For more details about these classes and what you can do with them, we refer to
the API documentation.

API documentation

Python bindings for yMMSL.

This package contains all the classes needed to represent a yMMSL file,
as well as to read and write yMMSL files.

	
class CheckpointRule

	Defines a checkpoint rule.

There are two flavors of rules: CheckpointRangeRule and
CheckpointAtRule. Do not use this class directly.

	
class CheckpointRangeRule(start: Union[float, int, None] = None, stop: Union[float, int, None] = None, every: Union[float, int] = 0)

	Defines a range of checkpoint moments.

If start is supplied, this rule specifies a checkpoint at: start,
start + every, start + 2*every, etc., for as long as
start + n*every <= stop, with n a whole number. If stop is not
given, the range continues indefinitely.

Start may be omitted, in which case a checkpoint is defined for 0,
every, 2*every, etc. Note that in this case the range also extends
to negative numbers (-every, -2*every, etc.), as simulated time may
be negative (e.g. in rocket launch, t=0 is generally taken as lift-off
time, but events already take place before that moment).

	
start

	Start of the range.

	
stop

	Stopping criterium of the range.

	
every

	Step size of the range, must be positive.

	
class CheckpointAtRule(at: Optional[List[Union[float, int]]])

	Defines an “at” checkpoint rule.

An “at” checkpoint rule creates a snapshot at the specified moments.

	
at

	List of checkpoints.

	
class Checkpoints(at_end: bool = False, wallclock_time: Optional[List[CheckpointRule]] = None, simulation_time: Optional[List[CheckpointRule]] = None)

	Defines checkpoints in a configuration.

There are three checkpoint triggers: at_end, wallclock_time and
simulation_time. The at_end trigger specifies that a checkpoint should
be created just before the workflow finishes. The wallclock_time trigger
is based on the elapsed real time since starting the muscle_manager in
seconds. The simulation_time trigger is based on the time in the
simulation as reported by the instances.

Note that the simulation_time trigger assumes a shared concept of time
among all components of the model.

	
at_end

	Whether a checkpoint should be created just before ending the
workflow.

	
wallclock_time

	Checkpoint rules for the wallclock_time trigger.

	
simulation_time

	Checkpoint rules for the simulation_time trigger.

	
update(overlay: Checkpoints) → None

	Update this checkpoints with the given overlay.

Sets at_end to True if it is set in the overlay, otherwise at_end
remains as is. Updates the checkpoint rules for wallclock time and
simulation time. See CheckpointRules.update().

	
class Component(name: str, implementation: Optional[str] = None, multiplicity: Union[None, int, List[int]] = None, ports: Optional[Ports] = None)

	An object declaring a simulation component.

Simulation components are things like submodels, scale bridges,
proxies, and any other program that makes up a model. This class
represents a declaration of a set of instances of a simulation
component, and it’s used to describe which instances are needed to
perform a certain simulation.

	
name

	The name of this component.

	Type

	ymmsl.Reference

	
implementation

	A reference to the
implementation to use.

	Type

	ymmsl.Reference

	
multiplicity

	The shape of the array of instances
that execute simultaneously.

	Type

	List[int]

	
ports

	The ports of this component,
organised by operator. None if not specified.

	Type

	Optional[Ports]

	
instances() → List[Reference]

	Creates a list of instances needed.

	Returns

	A list with one Reference for each instance of this
component.

	
class Conduit(sender: str, receiver: str)

	A conduit transports data between simulation components.

A conduit has two endpoints, which are references to a port on a
simulation component. These references must be of one of the
following forms:

	component.port

	namespace.component.port (or several namespace prefixes)

	
sender

	The sending port that this conduit is connected to.

	
receiver

	The receiving port that this conduit is connected to.

	
receiving_component() → Reference

	Returns a reference to the receiving component.

	
receiving_port() → Identifier

	Returns the identity of the receiving port.

	
receiving_slot() → List[int]

	Returns the slot on the receiving port.

If no slot was given, an empty list is returned.

	Returns

	A list of slot indexes.

	
sending_component() → Reference

	Returns a reference to the sending component.

	
sending_port() → Identifier

	Returns the identity of the sending port.

	
sending_slot() → List[int]

	Returns the slot on the sending port.

If no slot was given, an empty list is returned.

	Returns

	A list of slot indexes.

	
class Configuration(model: Model, settings: Optional[Settings] = None, implementations: Union[List[Implementation], Dict[Reference, Implementation]] = [], resources: Union[Sequence[ResourceRequirements], MutableMapping[Reference, ResourceRequirements]] = [], description: Optional[str] = None, checkpoints: Optional[Checkpoints] = None, resume: Optional[Dict[Reference, pathlib.Path]] = None)

	Configuration that includes all information for a simulation.

PartialConfiguration has some optional attributes, because we want
to allow configuration files which only contain some of the
information needed to run a simulation. At some point however,
you need all the bits, and this class requires them.

When loading a yMMSL file, you will automatically get an object
of this class if all the required components are there; if the
file is incomplete, you’ll get a PartialConfiguration instead.

	
model

	A model to run.

	
settings

	Settings to run the model with.

	
implementations

	Implementations to use to run the model.
Dictionary mapping implementation names (as References) to
Implementation objects.

	
resources

	Resources to allocate for the model components.
Dictionary mapping component names to Resources objects.

	
description

	A human-readable description of the configuration.

	
checkpoints

	Defines when each model component should create a snapshot

	
resume

	Defines what snapshot each model component should resume from

	
check_consistent() → None

	Checks that the configuration is internally consistent.

This checks whether all conduits are connected to existing
components, that there’s an implementation for every component,
and that resources have been requested for each component.

If any of these requirements is false, this function will
raise a RuntimeError with an explanation of the problem.

	
dump(config: PartialConfiguration) → str

	Converts a yMMSL configuration to a string containing YAML.

	Parameters

	config – The configuration to be saved to yMMSL.

	Returns

	A yMMSL YAML description of the given document.

	
class ExecutionModel

	Describes how to start a model component.

	
DIRECT = 1

	Start directly on the allocated core(s), without MPI.

	
INTELMPI = 3

	Start using Intel MPI’s mpirun.

	
OPENMPI = 2

	Start using OpenMPI’s mpirun.

	
SRUNMPI = 4

	Start MPI implementation using srun.

	
class Identifier(seq: Any)

	A custom string type that represents an identifier.

An identifier may consist of upper- and lowercase characters, digits, and underscores.

	
class Implementation(name: Reference, modules: Union[str, List[str], None] = None, virtual_env: Optional[pathlib.Path] = None, env: Optional[Dict[str, str]] = None, execution_model: ExecutionModel = <ExecutionModel.DIRECT: 1>, executable: Optional[pathlib.Path] = None, args: Union[str, List[str], None] = None, script: Union[str, List[str], None] = None, can_share_resources: bool = True, keeps_state_for_next_use: KeepsStateForNextUse = <KeepsStateForNextUse.NECESSARY: 1>)

	Describes an installed implementation.

An Implementation normally has an executable and any other
needed attributes, with script set to None. You should specify
a script only as a last resort, probably after getting some help
from the authors of this library. If a script is specified, all
other attributes except for the name must be None.

For execution_model, the following values are supported:

	direct

	The program will be executed directly. Use this for non-MPI
programs.

	openmpi

	For MPI programs that should be started using OpenMPI’s mpirun.

	intelmpi

	For MPI programs that should be started using Intel MPI’s
mpirun.

The can_share_resources attribute describes whether this
implementation can share resources (cores) with other components
in a macro-micro coupling. Set this to False if the
implementation does significant computing inside of its time
update loop after having sent messages on its O_I port(s) but
before receiving messages on its S port(s). In the unlikely case
that it’s doing significant computing before receiving for F_INIT
or after sending its O_F messages, likewise set this to False.

Setting this to False unnecessarily will waste core hours,
setting it to True incorrectly will slow down your simulation.

	
name

	Name of the implementation

	
modules

	HPC software modules to load

	
virtual_env

	Path to a virtual env to activate

	
env

	Environment variables to set

	
execution_model

	How to start the executable

	
executable

	Full path to executable to run

	
args

	Arguments to pass to the executable

	
script

	A script that starts the implementation

	
can_share_resources

	Whether this implementation can share
resources (cores) with other components or not

	
keeps_state_for_next_use

	Does this implementation keep state for the
next iteration of the reuse loop. See ImplementationState.

	
class KeepsStateForNextUse

	Describes whether an implementation keeps internal state between
iterations of the reuse loop.

See also Keeps state for next use.

	
HELPFUL = 3

	The implementation has an internal state, though this could be
regenerated. Doing so may be expensive.

	
NECESSARY = 1

	The implementation has an internal state that is necessary for
continuing the implementation.

	
NO = 2

	The implementation has no internal state.

	
load(source: Union[str, pathlib.Path, IO[Any]]) → PartialConfiguration

	Loads a yMMSL document from a string or a file.

	Parameters

	source – A string containing yMMSL data, a pathlib Path to a
file containing yMMSL data, or an open file-like
object containing from which yMMSL data can be read.

	Returns

	A PartialConfiguration object corresponding to the input data.

	
class Model(name: str, components: List[Component], conduits: Optional[List[Union[Conduit, MulticastConduit]]] = None)

	Describes a simulation model.

A model consists of a number of components connected by
conduits.

Note that there may be no conduits, if there is only a single
component. In that case, the conduits argument may be
omitted when constructing the object, and also from the YAML file;
the conduits attribute will then be set to an empty list.

	
name

	The name by which this simulation model is known to
the system.

	
components

	A list of components making up the
model.

	
conduits

	A list of conduits connecting the components.

	
check_consistent() → None

	Checks that the model is internally consistent.

This checks whether all conduits are connected to existing
components, and will raise a RuntimeError with an explanation
if one is not.

	
update(overlay: Model) → None

	Overlay another model definition on top of this one.

This updates the object with the name, components and conduits
given in the argument. The name is overwritten, and components
are overwritten if they have the same name as an existing
argument or else added.

Conduits are added. If a receiving port was already connected, the
old conduit is removed. If a sending port was already connected, the
new conduit is added and the sending port acts as a multicast port.

	Parameters

	overlay – A Model definition to overlay on top of this one.

	
class ModelReference(name: str)

	Describes a reference (by name) to a model.

	
name

	The name of the simulation model this refers to.

	
class MPICoresResReq(name: Reference, mpi_processes: int, threads_per_mpi_process: int = 1)

	Describes resources for simple MPI implementations.

This allocates individual cores or sets of cores on the same node
for a given number of MPI processes per instance.

	
name

	Name of the component to configure.

	
mpi_processes

	Number of MPI processes to start.

	
threads_per_mpi_process

	Number of threads/cores per process.

	
class MPINodesResReq(name: Reference, nodes: int, mpi_processes_per_node: int, threads_per_mpi_process: int = 1)

	Describes resources for node based MPI implementations.

This allocates resources for an MPI process in terms of nodes and
cores, processes and threads on them.

	
name

	Name of the component to configure.

	
nodes

	Number of nodes to reserve.

	
mpi_processes_per_node

	Number of MPI processes to start on
each node.

	
threads_per_mpi_process

	Number of threads/cores per process.

	
class Operator

	An operator of a component.

This is a combination of the Submodel Execution Loop operators,
and operators for other components such as mappers.

	
F_INIT = 1

	Initialisation phase, before start of the SEL

	
NONE = 0

	No operator

	
O_F = 5

	Observation of final state, after the SEL

	
O_I = 2

	State observation within the model’s main loop

	
S = 3

	State update in the model’s main loop

	
allows_receiving() → bool

	Whether ports on this operator can receive.

	
allows_sending() → bool

	Whether ports on this operator can send.

	
class PartialConfiguration(model: Optional[ModelReference] = None, settings: Optional[Settings] = None, implementations: Union[List[Implementation], Dict[Reference, Implementation], None] = None, resources: Union[Sequence[ResourceRequirements], MutableMapping[Reference, ResourceRequirements], None] = None, description: Optional[str] = None, checkpoints: Optional[Checkpoints] = None, resume: Optional[Dict[Reference, pathlib.Path]] = None)

	Top-level class for all information in a yMMSL file.

	
model

	A model to run.

	
settings

	Settings to run the model with.

	
implementations

	Implementations to use to run the model.
Dictionary mapping implementation names (as References) to
Implementation objects.

	
resources

	Resources to allocate for the model components.
Dictionary mapping component names to ResourceRequirements
objects.

	
description

	A human-readable description of the configuration.

	
checkpoints

	Defines when each model component should create a snapshot

	
resume

	Defines what snapshot each model component should resume from

	
as_configuration() → Configuration

	Converts to a full Configuration object.

This checks that this PartialConfiguration has all the pieces
needed to run a simulation, and if so converts it to a
Configuration object.

Note that this doesn’t check references, just that there is
a model, implementations and resources. For the more extensive
check, see Configuration.check_consistent().

	Returns

	A corresponding Configuration.

	Raises

	ValueError – If this configuration isn’t complete.

	
update(overlay: PartialConfiguration) → None

	Update this configuration with the given overlay.

This will update the model according to Model.update(), copy
settings from overlay on top of the current settings, overwrite
implementations with the same name and add implementations with a new
name, and likewise for resources and resume. The description of the
overlay is appended to the current description. Checkpoints are updated
according to Checkpoints.update().

	Parameters

	overlay – A configuration to overlay onto this one.

	
class Port(name: Identifier, operator: Operator)

	A port on a component.

Ports are used by component to send or receive messages on. They are
connected by conduits to enable communication between components.

	
name

	The name of the port.

	
operator

	The MMSL operator in which this port is used.

	
class Ports(f_init: Union[None, str, List[str]] = None, o_i: Union[None, str, List[str]] = None, s: Union[None, str, List[str]] = None, o_f: Union[None, str, List[str]] = None)

	Ports declaration for a component.

Ports objects compare for equality by value. The names may be
specified as a list of strings, or separated by spaces in a single
string. If a particular operator has no associated ports, it may
be omitted. For example:

ports:
 f_init: # list of names
 - a
 - b
 o_i: c d # on one line, space-separated
 s: e # single port
 # o_f omitted as it has no ports

	
f_init

	The ports associated with the F_INIT operator.

	
o_i

	The ports associated with the O_I operator

	
s

	The ports associated with the S operator.

	
o_f

	The ports associated with the O_F operator

	
all_ports() → Iterable[Port]

	Returns an iterable containing all ports.

	
operator(port_name: Identifier) → Operator

	Looks up the operator for a given port.

	Parameters

	port_name – Name of the port to look up.

	Returns

	The operator for that port.

	Raises

	KeyError – If no port with this name was found.

	
port_names() → Iterable[Identifier]

	Returns an iterable containing the names of all ports.

	
class Reference(parts: Union[str, List[Union[Identifier, int]]])

	A reference to an object in the MMSL execution model.

References in string form are written as either:

	an Identifier,

	a Reference followed by a period and an Identifier, or

	a Reference followed by an integer enclosed in square brackets.

In object form, they consist of a list of Identifiers and ints. The first list item is always an Identifier. For the rest of the list, an Identifier represents a period operator with that argument, while an int represents the indexing operator with that argument.

Reference objects act like a list of Identifiers and ints, you can
get their length using len(), iterate through the parts using a
loop, and get sublists or individual items using []. Note that the
sublist has to be a valid Reference, so it cannot start with an
int.

References can be compared for equality to each other or to a
plain string, and they can be used as dictionary keys. Reference
objects are immutable (or they’re supposed to be anyway), so do not
try to change any of the elements. Instead, make a new Reference.
Especially References that are used as dictionary keys must not be
modified, this will get your dictionary in a very confused state.

	
without_trailing_ints() → Reference

	Returns a copy of this Reference with trailing ints removed.

Examples

a.b.c[1][2] -> a.b.c
a[1].b.c -> a[1].b.c
a.b.c -> a.b.c
a[1].b.c[2] -> a[1].b.c

	
class ResourceRequirements(name: Reference)

	Describes resources to allocate for components.

	
name

	Name of the component to configure.

	
save(config: PartialConfiguration, target: Union[str, pathlib.Path, IO[Any]]) → None

	Saves a yMMSL configuration to a file.

	Parameters

	
	config – The configuration to save to yMMSL.

	target – The file to save to, either as a string containing a
path, as a pathlib Path object, or as an open file-like
object.

	
class Settings(settings: Optional[Dict[str, Union[str, int, float, bool, List[float], List[List[float]], yatiml.util.bool_union_fix]]] = None)

	Settings for doing an experiment.

An experiment is done by running a model with particular settings, for the submodel scales, model parameters and any other configuration.

	
as_ordered_dict() → collections.OrderedDict

	Represent as a dictionary of plain built-in types.

	Returns: A dictionary that uses only built-in types, containing

	the configuration.

	
copy() → Settings

	Makes a shallow copy of these settings and returns it.

	
ordered_items() → List[Tuple[Reference, Union[str, int, float, bool, List[float], List[List[float]], yatiml.util.bool_union_fix]]]

	Return settings as a list of tuples.

	
class ThreadedResReq(name: Reference, threads: int)

	Describes resources for threaded implementations.

This includes singlethreaded and multithreaded implementations
that do not support MPI. As many cores as specified will be
allocated on a single node, for each instance.

	
name

	Name of the component to configure.

	
threads

	Number of threads/cores per instance.

 Python Module Index

 y

 		 	

 		
 y	

 	
 	
 ymmsl	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	all_ports() (Ports method)

 	allows_receiving() (Operator method)

 	allows_sending() (Operator method)

 	args (Implementation attribute)

 	
 	as_configuration() (PartialConfiguration method)

 	as_ordered_dict() (Settings method)

 	at (CheckpointAtRule attribute)

 	at_end (Checkpoints attribute)

C

 	
 	can_share_resources (Implementation attribute)

 	check_consistent() (Configuration method)

 	(Model method)

 	CheckpointAtRule (class in ymmsl)

 	CheckpointRangeRule (class in ymmsl)

 	CheckpointRule (class in ymmsl)

 	Checkpoints (class in ymmsl)

 	
 	checkpoints (Configuration attribute)

 	(PartialConfiguration attribute)

 	Component (class in ymmsl)

 	components (Model attribute)

 	Conduit (class in ymmsl)

 	conduits (Model attribute)

 	Configuration (class in ymmsl)

 	copy() (Settings method)

D

 	
 	description (Configuration attribute)

 	(PartialConfiguration attribute)

 	
 	DIRECT (ExecutionModel attribute)

 	dump() (in module ymmsl)

E

 	
 	env (Implementation attribute)

 	every (CheckpointRangeRule attribute)

 	
 	executable (Implementation attribute)

 	execution_model (Implementation attribute)

 	ExecutionModel (class in ymmsl)

F

 	
 	F_INIT (Operator attribute)

 	
 	f_init (Ports attribute)

H

 	
 	HELPFUL (KeepsStateForNextUse attribute)

I

 	
 	Identifier (class in ymmsl)

 	Implementation (class in ymmsl)

 	implementation (Component attribute)

 	
 	implementations (Configuration attribute)

 	(PartialConfiguration attribute)

 	instances() (Component method)

 	INTELMPI (ExecutionModel attribute)

K

 	
 	keeps_state_for_next_use (Implementation attribute)

 	
 	KeepsStateForNextUse (class in ymmsl)

L

 	
 	load() (in module ymmsl)

M

 	
 	Model (class in ymmsl)

 	model (Configuration attribute)

 	(PartialConfiguration attribute)

 	ModelReference (class in ymmsl)

 	modules (Implementation attribute)

 	
 	mpi_processes (MPICoresResReq attribute)

 	mpi_processes_per_node (MPINodesResReq attribute)

 	MPICoresResReq (class in ymmsl)

 	MPINodesResReq (class in ymmsl)

 	multiplicity (Component attribute)

N

 	
 	name (Component attribute)

 	(Implementation attribute)

 	(MPICoresResReq attribute)

 	(MPINodesResReq attribute)

 	(Model attribute)

 	(ModelReference attribute)

 	(Port attribute)

 	(ResourceRequirements attribute)

 	(ThreadedResReq attribute)

 	
 	NECESSARY (KeepsStateForNextUse attribute)

 	NO (KeepsStateForNextUse attribute)

 	nodes (MPINodesResReq attribute)

 	NONE (Operator attribute)

O

 	
 	O_F (Operator attribute)

 	o_f (Ports attribute)

 	O_I (Operator attribute)

 	o_i (Ports attribute)

 	
 	OPENMPI (ExecutionModel attribute)

 	Operator (class in ymmsl)

 	operator (Port attribute)

 	operator() (Ports method)

 	ordered_items() (Settings method)

P

 	
 	PartialConfiguration (class in ymmsl)

 	Port (class in ymmsl)

 	
 	port_names() (Ports method)

 	Ports (class in ymmsl)

 	ports (Component attribute)

R

 	
 	receiver (Conduit attribute)

 	receiving_component() (Conduit method)

 	receiving_port() (Conduit method)

 	receiving_slot() (Conduit method)

 	Reference (class in ymmsl)

 	
 	ResourceRequirements (class in ymmsl)

 	resources (Configuration attribute)

 	(PartialConfiguration attribute)

 	resume (Configuration attribute)

 	(PartialConfiguration attribute)

S

 	
 	S (Operator attribute)

 	s (Ports attribute)

 	save() (in module ymmsl)

 	script (Implementation attribute)

 	sender (Conduit attribute)

 	sending_component() (Conduit method)

 	sending_port() (Conduit method)

 	
 	sending_slot() (Conduit method)

 	Settings (class in ymmsl)

 	settings (Configuration attribute)

 	(PartialConfiguration attribute)

 	simulation_time (Checkpoints attribute)

 	SRUNMPI (ExecutionModel attribute)

 	start (CheckpointRangeRule attribute)

 	stop (CheckpointRangeRule attribute)

T

 	
 	ThreadedResReq (class in ymmsl)

 	threads (ThreadedResReq attribute)

 	
 	threads_per_mpi_process (MPICoresResReq attribute)

 	(MPINodesResReq attribute)

U

 	
 	update() (Checkpoints method)

 	(Model method)

 	(PartialConfiguration method)

V

 	
 	virtual_env (Implementation attribute)

W

 	
 	wallclock_time (Checkpoints attribute)

 	
 	without_trailing_ints() (Reference method)

Y

 	
 	ymmsl (module)

 nav.xhtml

 Table of Contents

 		
 yMMSL Python bindings

 		
 Overview

 		
 Installation

 		
 Reading yMMSL files

 		
 Writing yMMSL files

 		
 Usage

 		
 Models

 		
 Simulation Components

 		
 Conduits

 		
 Settings

 		
 Implementations

 		
 Keeps state for next use

 		
 Resources

 		
 Checkpoints

 		
 Checkpoint triggers

 		
 Examples

 		
 API reference

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

