
yMMSL Python bindings
Documentation

Release 0.13.0

Lourens Veen

Jan 17, 2023

Contents:

1 Overview 3
1.1 Installation . 4
1.2 Reading yMMSL files . 4
1.3 Writing yMMSL files . 5

2 Usage 7
2.1 Models . 8
2.2 Settings . 11
2.3 Implementations . 12
2.4 Resources . 13
2.5 Checkpoints . 14
2.6 Examples . 15

3 API Reference 19
3.1 API documentation . 19

4 Indices and tables 29

Python Module Index 31

Index 33

i

ii

yMMSL Python bindings Documentation, Release 0.13.0

Welcome to the documentation pages for yMMSL, the YAML version of the Multiscale Modeling and Simulation
Language. At the moment, yMMSL is mainly the configuration language for the MUSCLE3 multiscale coupling
library.

This library provides Python bindings for yMMSL. With it, you can read and write yMMSL files, and manipulate
them using a Python object representation of their contents. This documentation gives an overview of the format, and
a description of the Python API.

Contents: 1

yMMSL Python bindings Documentation, Release 0.13.0

2 Contents:

CHAPTER 1

Overview

A yMMSL file is a YAML file that looks approximately like this:

Listing 1: docs/example.ymmsl

ymmsl_version: v0.1

model:
name: macro_micro_model
components:
macro: my.macro_model
micro: my.micro_model

conduits:
macro.state_out: micro.init_in
micro.final_out: macro.update_in

settings:
Scales
domain._muscle_grain: 0.01
domain._muscle_extent: 1.0
macro._muscle_timestep: 10.0
macro._muscle_total_time: 1000.0
micro._muscle_timestep: 0.01
micro._muscle_total_time: 1.0

Global settings
k: 1.0
interpolation_method: linear

Submodel-specific setting
micro.d: 2.3

implementations:
my.macro_model:
executable: /home/user/model

(continues on next page)

3

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

my.micro_model:
modules: gcc openmpi
execution_model: openmpi
executable: /home/user/model2

resources:
macro:
threads: 1

micro:
mpi_processes: 8

checkpoints:
at_end: true
simulation_time:
- every: 50

This file describes a macro-micro coupled simulation model with time-scale separation and domain overlap. It de-
scribes both the model itself and an experiment to be run with this model, and contains the minimal information
needed for MUSCLE 3 to be able to coordinate model execution. We’ll go into more detail on this file in a moment.

The yMMSL YAML format is supported by the ymmsl-python library, whose documentation you are currently reading.
This library lets you read and write yMMSL files, and manipulate their contents using an object-based Python API.

1.1 Installation

ymmsl-python is on PyPI, so you can install it using Pip:

pip install ymmsl

or you can add it to your dependencies as usual, e.g. in your setup.py or your requirements.txt, depending
on how you’ve set up your project.

1.2 Reading yMMSL files

Here is an example of loading a yMMSL file:

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

This makes config an object of type ymmsl.Configuration, which is the top-level class describing a yMMSL
document. More on these objects in the next section. The ymmsl.load() function can also load from an open file
or from a string containing YAML data.

If the file is valid YAML, but not recognized as a yMMSL file, the library will raise a ymmsl.RecognitionError
with a message describing in detail what is wrong, so that you can easily fix the file.

Note that the ymmsl.load() function uses the safe loading functionality of the underlying YAML library, so you
can safely load files from untrusted sources.

4 Chapter 1. Overview

yMMSL Python bindings Documentation, Release 0.13.0

1.3 Writing yMMSL files

To write a yMMSL file with the contents of a ymmsl.Configuration, we use ymmsl.save:

from pathlib import Path
from ymmsl import Component, Configuration, Model, Settings

model = Model('test_model', [Component('macro')])
settings = Settings(OrderedDict([('test_parameter', 42)]))
config = Configuration(model, settings)

ymmsl.save(config, Path('out.ymmsl'))

Here, we create a model named test_model, containing a single component named macro, and no conduits. For
the settings, we create a Settings object, which is a container for an ordered dictionary of settings. Note that normal
Python dictionaries are unordered, which is why YAML documents saved from Python are often in a random order
and hard to read. We avoid that problem in yMMSL by using an OrderedDict here. You have to pass it a list of
tuples, because using dictionary syntax with curly brackets will lose the ordering.

Finally, we combine the model and the settings into a yammsl.Configuration object, which we then save to a
file. If you want to have the YAML as a string, use ymmsl.dump() instead.

As the format may develop over time, files are required to carry a version, in this case v0.1, which is currently the only
version of yMMSL.

When you read in a yMMSL file as described above, you get a collection of Python objects describing its contents.
The next section explains how those work.

1.3. Writing yMMSL files 5

yMMSL Python bindings Documentation, Release 0.13.0

6 Chapter 1. Overview

CHAPTER 2

Usage

As shown on the previous page, the ymmsl-python library converts yMMSL from YAML to Python objects and
back. Here, we dive into this a bit deeper and see how those Python objects can be used.

Generally speaking, the object model used by the ymmsl library follows the structure of the YAML document, but
there are a few places where some syntactic sugar has been added to make the files easier to read and write by hand.
Let’s have a look at the example again:

Listing 1: docs/example.ymmsl

ymmsl_version: v0.1

model:
name: macro_micro_model
components:
macro: my.macro_model
micro: my.micro_model

conduits:
macro.state_out: micro.init_in
micro.final_out: macro.update_in

settings:
Scales
domain._muscle_grain: 0.01
domain._muscle_extent: 1.0
macro._muscle_timestep: 10.0
macro._muscle_total_time: 1000.0
micro._muscle_timestep: 0.01
micro._muscle_total_time: 1.0

Global settings
k: 1.0
interpolation_method: linear

Submodel-specific setting

(continues on next page)

7

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

micro.d: 2.3

implementations:
my.macro_model:
executable: /home/user/model

my.micro_model:
modules: gcc openmpi
execution_model: openmpi
executable: /home/user/model2

resources:
macro:
threads: 1

micro:
mpi_processes: 8

checkpoints:
at_end: true
simulation_time:
- every: 50

If you read this into a variable named config, then config will contain an object of type ymmsl.
Configuration. The yMMSL file above is a nested dictionary (or mapping, in YAML terms) with at the top
level the keys ymmsl_version, model and settings. The ymmsl_version key is handled internally by the
library, so it does not show up in the ymmsl.Configuration object. The others, model and settings are loaded
into attributes of config.

Note that settings is optional: if it is not given in the YAML file, the corresponding attribute will be an empty ymmsl.
Settings object. Likewise, when saving an empty ymmsl.Configuration, the settings section will be omitted.

As a result, config.model will give you an object representing the model part of the file, while config.
settings contains an object with the settings in it. ymmsl.Configuration is just a simple record that holds
the two parts together, so this is all it can do.

2.1 Models

The model section of the yMMSL document describes the simulation model. It has the model’s name, a list of simu-
lation components, and it describes the conduits between those components. (Simulation) components are submodels,
scale bridges, mappers, proxies, and any other program that makes up the coupled simulation. Conduits are the wires
between them that are used to exchange messages.

The model section is represented in Python by the ymmsl.Model class. It has attributes name, components and
conduits corresponding to those sections in the file. Attribute name is an ymmsl.Identifier object.

Note that conduits are optional, you may have a model that consists of only one component and no conduits at all.
In YAML, you can write this by omitting the conduits attribute. In Python, you can also omit the conduits argument
when constructing a Model. In both cases, the conduits attribute will be an empty list.

Listing 2: Accessing the model

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

(continues on next page)

8 Chapter 2. Usage

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

print(config.model.name) # output: macro_micro_model
print(len(config.model.components)) # output: 2

An identifier contains the name of an object, like a simulation model, a component or a port (see below). It is a
string containing letters, digits, and/or underscores which must start with a letter or underscore, and may not be empty.
Identifiers starting with an underscore are reserved for use by the software (e.g. MUSCLE3), and may only be used as
specified by the software you are using.

The ymmsl.Identifier Python class represents an identifier. It works almost the same as a normal Python str,
but checks that the string it contains is actually a valid identifier.

2.1.1 Simulation Components

The model section contains a subsection components, in which the components making up the simulation are
described. These are the submodels, and special components like scale bridges, data converters, load balancers, etc.
yMMSL lets you describe components in two ways, a short one and a longer one:

Listing 3: Macro-meso-micro model components

components:
macro: my.macro_model
meso:
ports:

f_init: boundary_in
o_i: state_out
s: state_in
o_f: boundary_out

implementation: my.meso_model
multiplicity: 5

micro:
implementation: my.micro_model
multiplicity: [5, 10]

This fragment describes a macro-meso-micro model set-up with a single macro model instance, five instances of the
meso model, and five sets of ten micro model instances each. If the simulation requires only a single instance of a
component, the short form can be used, as above for the macro component. It simply maps the name of the component
to an implementation (more on those in a moment).

The longer form maps the name of the component to a dictionary containing three attributes: the ports, the
implementation and the multiplicity. Ports are the connectors on the component to which conduits at-
tach to connect it to other components. These are organised by operator; we refer to the MUSCLE3 documentation
for more on how they are used. Specifying ports here is optional, but doing so can improve efficiency.

The implementation is the name of the implementation as in the short form, while the multiplicity specifies how many
instances of this component exist in the simulation. Multiplicity is a list of integers (as for micro in this example),
but may be written as a single integer if it’s a one-dimensional set (as for meso).

All this is a concise and easy to read and write a YAML file, but on the Python side, all this flexibility would make
for complex code. To avoid that, the ymmsl-python library applies syntactic sugar when converting between YAML
and Python. On the Python side, the components attribute of ymmsl.Model always contains a list of ymmsl.
Component objects, regardless of how the YAML file was written. When this list is written to a YAML file, the most
concise representation is automatically chosen to make the file easier to read by a human user.

2.1. Models 9

yMMSL Python bindings Documentation, Release 0.13.0

Listing 4: Accessing the simulation components

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('macro_meso_micro.ymmsl'))

cps = config.model.components
print(cps[0].name) # output: macro
print(cps[0].implementation) # output: my.macro_model
print(cps[0].multiplicity) # output: []
print(cps[2].name) # output: micro
print(cps[2].implementation) # output: my.micro_model
print(cps[2].multplicity) # output: [5, 10]

(Note that macro_meso_micro.ymmsl does not come with this documentation, go ahead and make it yourself
using the above listing!)

The ymmsl.Component class has four attributes, unsurprisingly named name, implementation,
multiplicity and ports. Attributes name and implementation are of type ymmsl.Reference. A
reference is a string consisting of one or more identifiers (as described above), separated by periods.

Depending on the context, this may represent a name in a namespace (as it is here), or an attribute of an object (as we
will see below with Conduits). The multiplicity attribute is always a list of ints, but may be omitted or given as
a single int when creating a ymmsl.Component object, just like in the YAML file.

The implementation attribute of ymmsl.Component refers to an implementation definition. More on those
below.

2.1.2 Conduits

The final subsection of the model section is labeled conduits. Conduits tie the components together by connecting
ports on those components. Which ports a component has depends on the component, so you have to look at its
documentation (or the source code, if there isn’t any documentation) to see which ports are available and how they
should be used.

As you can see, the conduits are written as a dictionary on the YAML side, which maps senders to receivers. A sender
consists of the name of a component, followed by a period and the name of a port on that component; likewise for a
receiver. In the YAML file, the sender is always on the left of the colon, the receiver on the right.

Just like the simulation components, the conduits get converted to a list in Python, in this case containing
ymmsl.Conduit objects. The ymmsl.Conduit class has sender and receiver attributes, of type ymmsl.
Reference (see above), and a number of helper functions to interpret these fields, e.g. to extract the component and
port name parts. Note that the format allows specifying a slot here, but this is currently not supported and illegal in
MUSCLE3.

Multicast conduits

In yMMSL you can specify that an output port is connected to multiple input ports. When a message is sent on the
output port, it is copied and delivered to all connected input ports. This is called multicast and is expressed as follows:

Listing 5: Specifying multicast in yMMSL

conduits:
sender.port:

(continues on next page)

10 Chapter 2. Usage

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

- receiver1.port
- receiver2.port

This multicast conduit is converted to a a list of conduits sharing the same sender:

Listing 6: Multicast conduits in python code

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('multicast.ymmsl'))

conduits = config.model.conduits
print(len(conduits)) # output: 2
print(conduits[0]) # output: Conduit(sender.port -> receiver1.port)
print(conduits[1]) # output: Conduit(sender.port -> receiver2.port)

2.2 Settings

The settings section contains settings for the simulation to run with. In YAML, this is a dictionary that maps a setting
name (a ymmsl.Reference) to its value. Parameter values may be strings, integers, floating point numbers, lists of
floating point numbers (vectors), or lists of lists of floating point numbers (arrays).

Listing 7: Settings example

settings:
domain.grain: 0.01
domain.extent.x: 1.0
domain.extent.y: 1.0
macro.timestep: 10.0
macro.total_time: 1000.0
micro.timestep: 0.01
micro.total_time: 1.0

interpolate: true
interpolation_method: linear
kernel:
- [0.8, 0.2]
- [0.2, 0.8]

In this example, there is a macro-micro model in which the two models share a one-dimensional domain, which is
named domain, has a length and width of 1.0, and a grid spacing of 0.01. The macro model has a time step of 10 and a
total run time of 1000 (so it will run for 100 steps), while the micro model has a time step of 0.01 and a total run time
of 1.0. Furthermore, there are some other model settings, a boolean switch that enables interpolation, a string to select
the interpolation method, and a 2D array specifying a kernel of some kind.

On the Python side, this will be turned into a ymmsl.Settings object, which acts much like a Python dictionary. So
for instance, if you have a ymmsl.Configuration object named configwhich was loaded from a file containing
the above settings section, then you could write:

grid_dx = config.settings['domain.grain']
kernel = config.settings['kernel']

to obtain a floating point value of 0.1 in grid_dx and a list of lists [[0.8, 0.2], [0.2, 0.8]] in kernel.

2.2. Settings 11

yMMSL Python bindings Documentation, Release 0.13.0

2.3 Implementations

Components are abstract objects. For an actual simulation to run, we need computer programs that implement the
components of the simulation. As we’ve seen above, components refer to implementations, and those implementations
are defined in the implementations section of the yMMSL file:

Listing 8: Defining implementations

implementations:
simplest:
executable: /home/user/models/my_model

python_script:
virtual_env: /home/user/envs/my_env
executable: python3
args: /home/user/models/my_model.py

with_env_and_args:
env:

LD_LIBRARY_PATH: /home/user/muscle3/lib
ENABLE_AWESOME_SCIENCE: 1

executable: /home/user/models/my_model
args:
- --some-lengthy-option
- --some-other-lengthy-option=some-lengthy-value

As you can see, there are quite a few different ways of describing an implementation, but all implementations have a
name, which is the key in the dictionary, by which a component can refer to it.

The simplest implementation only has an executable. This could be a (probably statically linked) executable, or a
script that sets up an environment and starts the model.

If your model or other component is a Python script, then you may want to load a virtual environment before starting
it, to make the dependencies available. This is done using the virtual_env attribute. If the script does not have a
#!/usr/bin/env python line at the top (in which case you could set it as the executable) then you need to start
the Python interpreter directly, and pass the location of the script as an argument.

Environment variables can be set through the env attribute, which contains a dictionary mapping variable names to
values, as shown for the with_env_and_args example. This also shows that you can pass the arguments as a list,
if that makes things easier to read.

Listing 9: MPI and HPC implementations

implementations:
mpi_implementation:
executable: /home/user/models/my_model
execution_model: openmpi

on_hpc_cluster:
modules: cpp openmpi
executable: /home/user/models/my_model
execution_model: intelmpi

with_script:
script: |

#!/bin/bash

(continues on next page)

12 Chapter 2. Usage

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

. /home/user/muscle3/bin/muscle3.env
export ENABLE_AWESOME_SCIENCE=1

/home/user/models/my_model -v -x

MPI programs are a bit special, as they need to be started via mpirun. However, mpirun assumes that the program to
start is going to use all of the available resources. For a coupled simulation with multiple components, that is usually
not what you want. It is possible to tell mpirun to only use some of the resources, but of course we don’t know
which ones will be available while writing this file. Instead, you simply specify the path to the executable, and set the
execution_model attribute to either openmpi or intelmpi as required. When executing with MUSCLE3, the
MUSCLE Manager will then start the component on its designated subset of the resources as required.

The on_hpc_cluster implementation demonstrates loading environment modules, as commonly needed on HPC
machines. They’re all in one line here, but if the modules have long names, then like with the arguments you can make
a list to keep things readable.

Finally, if you need to do something complicated, you can write an inline script to start the implementation. This
currently only works for non-MPI programs however.

2.3.1 Keeps state for next use

Implementations may indicate if they carry state between reuses. This is currently only used for checkpoints, but might
see further use in the future (e.g. for load balancers). There are three possible values an implementation may indicate.

Necessary This implementation remembers state between consecutive iterations of the reuse loop. That state is re-
quired for the proper execution of the implementation.

This is the default value when not specified.

Example: A micro model simulating an enclosed volume, where every reuse the boundary conditions are
updated by the connected macro model. This micro model must keep track of the state inside the simulated
volume between iterations of the reuse loop.

No This implementation has no state between consecutive iterations of the reuse loop.

Example: A data converter that receives on an F_INIT port, transforms the data and outputs it on an O_F port.
The transformation is only dependent on the information of the F_INIT message.

Helpful This implementation remembers state between consecutive iterations of the reuse loop. However, this state
is not required for proper execution.

Example: A simulation of a fluid in a pipe with obstacles. The simulation converges much faster when starting
from the solution of the previous iteration. However, the same solution can still be found when starting from
scratch.

2.4 Resources

Finally, yMMSL allows specifying the amount of resources needed to run an instance of an implementation. This
information is used by MUSCLE3 when it starts each component, to ensure it has the resources needed to do its
calculations. Currently, only the number of threads or processes can be specified; memory and GPUs are future work.

Resources are specified per component, and apply to each instance of that component. For single- or multithreaded
components, or components that use multiple local processes (for example with Python’s multiprocessing), you
specify the number of threads:

2.4. Resources 13

yMMSL Python bindings Documentation, Release 0.13.0

Listing 10: Resources for threaded processes

resources:
macro:
threads: 1

micro:
threads: 8

On the Python side, this is represented by ymmsl.ThreadedResReq (short for ThreadedResourceRequirements),
which holds the name of the component it specifies the resources for in attribute name, and the number of threads or
processes (basically, cores) as threads.

For MPI-based implementations, there are two different ways of specifying the required resources: core-based and
node-based. For core-based resource requirements (ymmsl.MPICoresResReq on the Python side), you specify
the number of MPI processes, and optionally the number of threads per MPI process:

Listing 11: Core-based resources for MPI components

resources:
macro:
mpi_processes: 32

micro:
mpi_processes: 16
threads_per_mpi_process: 8

On HPC, this allocates each MPI process individually.

Node-based MPI allocations are not yet supported by MUSCLE3, but you can already specify them as follows:

Listing 12: Node-based resources for MPI components

resources:
macro:
nodes: 8
mpi_processes_per_node: 4
threads_per_mpi_process: 8

micro:
nodes: 1
mpi_processes_per_node: 16

Here, whole nodes are assigned to the implementation, with a specific number of MPI processes started on each node,
and optionally (the default is one) a certain number of cores per process made available.

More information on how this is interpreted and how MUSCLE3 allocates resources based on this can be found in the
High-Performance Computing section in the MUSCLE3 documentation.

2.5 Checkpoints

In yMMSL you can specify if you expect the workflow to create checkpoints. Note that all implementations in your
workflow must support checkpointing, MUSCLE3 will generate an error for you otherwise. See the documentation
for MUSCLE3 on checkpointing for details on enabling checkpointing for an implementation.

14 Chapter 2. Usage

https://muscle3.readthedocs.io/en/latest/distributed_execution.html#high-performance-computing
https://muscle3.readthedocs.io/en/latest/
https://muscle3.readthedocs.io/en/latest/

yMMSL Python bindings Documentation, Release 0.13.0

2.5.1 Checkpoint triggers

In yMMSL you have three possible checkpoint triggers:

at_end Create a checkpoint just before the instance shuts down. This can be a useful checkpoint if you intend to
resume the workflow at some later point, e.g. when you wish to simulate a longer time span. This trigger is
either on or off, specified with a boolean true or false (default) in the configuration.

simulation_time Create checkpoints based on the passed simulation time. This can only work properly if there
is a shared concept of simulated time in the workflow.

wallclock_time Create checkpoints based on the passed wall clock time (also called elapsed real time). This
method is not perfect and may result in missed checkpoints in certain coupling scenarios. See the MUSCLE3
documentation for a discussion of the limitations.

When you use any of the time-based triggers, you must also specify at what moments a checkpoint is expected.
MUSCLE3 will then snapshot as soon as possible after reaching the specified times. You may indicate specific
moments with at-rules, but can also create repetitive checkpoints.

Listing 13: Example checkpoint definition

checkpoints:
at_end: true
simulation_time:
- at: [1.2, 1.4]
- every: 1
wallclock_time:
- every: 60
stop: 600

- every: 600
start: 600
stop: 3600

- every: 1800
start: 3600

Above example demonstrates all possible checkpoint options. The workflow will create checkpoints:

• At the end: at_end: true.

• Every second of passed simulated time (t=0,1,2,...), and additionally at t=1.2 and t=1.4.

• Every minute of real elapsed time, for the first 10 minutes; then every 10 minutes for the remainder of the first
hour; then every 30 minutes until the end.

See the API documentation for CheckpointRangeRule for more details on the behaviour of the repetitive check-
points.

2.6 Examples

All the classes mentioned here are normal Python classes. They have constructors which you can use to create in-
stances, and their attributes can be changed as needed.

Here are a few examples:

Listing 14: Creating a Configuration and saving it

from pathlib import Path
import ymmsl

(continues on next page)

2.6. Examples 15

https://en.wikipedia.org/wiki/Elapsed_real_time

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

components = [
ymmsl.Component('macro', 'my.macro_model'),
ymmsl.Component('micro', 'my.micro_model')]

conduits = [
ymmsl.Conduit('macro.out', 'micro.in'),
ymmsl.Conduit('micro.out', 'macro.in')]

model = ymmsl.Model('my_model', components, conduits)

implementations = [
ymmsl.Implementation(

'my.macro_model', executable='/home/user/model'),
ymmsl.Implementation(

'my.micro_model', modules='gcc openmpi',
execution_model=ymmsl.ExecutionModel.OPENMPI)]

resources = [
ymmsl.ThreadedResReq(1),
ymmsl.MPICoresResReq(8)]

config = ymmsl.Configuration(model, implementations, resources)

ymmsl.save(config, Path('out.ymmsl'))

Will produce:
ymmsl_version: v0.1
model:
name: my_model
components:
macro: my.macro_model
micro: my.micro_model
conduits:
macro.out: micro.in
micro.out: macro.in
implementations:
my.macro_model:
executable: /home/user/model
my.micro_model:
modules: gcc openmpi
execution_model: openmpi
resources:
macro:
threads: 1
micro:
mpi_processes: 8

Listing 15: Adding or changing a setting

from pathlib import Path
import ymmsl

config = ymmsl.load(Path('example.ymmsl'))

config.settings['d'] = 0.12

(continues on next page)

16 Chapter 2. Usage

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

ymmsl.save(config, Path('out.ymmsl'))

For more details about these classes and what you can do with them, we refer to the API documentation.

2.6. Examples 17

yMMSL Python bindings Documentation, Release 0.13.0

18 Chapter 2. Usage

CHAPTER 3

API Reference

3.1 API documentation

Python bindings for yMMSL.

This package contains all the classes needed to represent a yMMSL file, as well as to read and write yMMSL files.

class CheckpointRule
Defines a checkpoint rule.

There are two flavors of rules: CheckpointRangeRule and CheckpointAtRule. Do not use this class
directly.

class CheckpointRangeRule(start: Union[float, int, None] = None, stop: Union[float, int, None] =
None, every: Union[float, int] = 0)

Defines a range of checkpoint moments.

If start is supplied, this rule specifies a checkpoint at: start, start + every, start + 2*every,
etc., for as long as start + n*every <= stop, with n a whole number. If stop is not given, the range
continues indefinitely.

Start may be omitted, in which case a checkpoint is defined for 0, every, 2*every, etc. Note that in this case
the range also extends to negative numbers (-every, -2*every, etc.), as simulated time may be negative
(e.g. in rocket launch, t=0 is generally taken as lift-off time, but events already take place before that moment).

start
Start of the range.

stop
Stopping criterium of the range.

every
Step size of the range, must be positive.

class CheckpointAtRule(at: Optional[List[Union[float, int]]])
Defines an “at” checkpoint rule.

19

yMMSL Python bindings Documentation, Release 0.13.0

An “at” checkpoint rule creates a snapshot at the specified moments.

at
List of checkpoints.

class Checkpoints(at_end: bool = False, wallclock_time: Optional[List[CheckpointRule]] = None,
simulation_time: Optional[List[CheckpointRule]] = None)

Defines checkpoints in a configuration.

There are three checkpoint triggers: at_end, wallclock_time and simulation_time. The at_end trigger specifies
that a checkpoint should be created just before the workflow finishes. The wallclock_time trigger is based on
the elapsed real time since starting the muscle_manager in seconds. The simulation_time trigger is based on the
time in the simulation as reported by the instances.

Note that the simulation_time trigger assumes a shared concept of time among all components of the model.

at_end
Whether a checkpoint should be created just before ending the workflow.

wallclock_time
Checkpoint rules for the wallclock_time trigger.

simulation_time
Checkpoint rules for the simulation_time trigger.

update(overlay: Checkpoints)→ None
Update this checkpoints with the given overlay.

Sets at_end to True if it is set in the overlay, otherwise at_end remains as is. Updates the checkpoint rules
for wallclock time and simulation time. See CheckpointRules.update().

class Component(name: str, implementation: Optional[str] = None, multiplicity: Union[None, int,
List[int]] = None, ports: Optional[Ports] = None)

An object declaring a simulation component.

Simulation components are things like submodels, scale bridges, proxies, and any other program that makes up
a model. This class represents a declaration of a set of instances of a simulation component, and it’s used to
describe which instances are needed to perform a certain simulation.

name
The name of this component.

Type ymmsl.Reference

implementation
A reference to the implementation to use.

Type ymmsl.Reference

multiplicity
The shape of the array of instances that execute simultaneously.

Type List[int]

ports
The ports of this component, organised by operator. None if not specified.

Type Optional[Ports]

instances()→ List[Reference]
Creates a list of instances needed.

Returns A list with one Reference for each instance of this component.

20 Chapter 3. API Reference

yMMSL Python bindings Documentation, Release 0.13.0

class Conduit(sender: str, receiver: str)
A conduit transports data between simulation components.

A conduit has two endpoints, which are references to a port on a simulation component. These references must
be of one of the following forms:

• component.port

• namespace.component.port (or several namespace prefixes)

sender
The sending port that this conduit is connected to.

receiver
The receiving port that this conduit is connected to.

receiving_component()→ Reference
Returns a reference to the receiving component.

receiving_port()→ Identifier
Returns the identity of the receiving port.

receiving_slot()→ List[int]
Returns the slot on the receiving port.

If no slot was given, an empty list is returned.

Returns A list of slot indexes.

sending_component()→ Reference
Returns a reference to the sending component.

sending_port()→ Identifier
Returns the identity of the sending port.

sending_slot()→ List[int]
Returns the slot on the sending port.

If no slot was given, an empty list is returned.

Returns A list of slot indexes.

class Configuration(model: Model, settings: Optional[Settings] = None, implementations:
Union[List[Implementation], Dict[Reference, Implementation]] = [], re-
sources: Union[Sequence[ResourceRequirements], MutableMapping[Reference,
ResourceRequirements]] = [], description: Optional[str] = None, checkpoints:
Optional[Checkpoints] = None, resume: Optional[Dict[Reference, pathlib.Path]]
= None)

Configuration that includes all information for a simulation.

PartialConfiguration has some optional attributes, because we want to allow configuration files which only
contain some of the information needed to run a simulation. At some point however, you need all the bits, and
this class requires them.

When loading a yMMSL file, you will automatically get an object of this class if all the required components
are there; if the file is incomplete, you’ll get a PartialConfiguration instead.

model
A model to run.

settings
Settings to run the model with.

3.1. API documentation 21

yMMSL Python bindings Documentation, Release 0.13.0

implementations
Implementations to use to run the model. Dictionary mapping implementation names (as References) to
Implementation objects.

resources
Resources to allocate for the model components. Dictionary mapping component names to Resources
objects.

description
A human-readable description of the configuration.

checkpoints
Defines when each model component should create a snapshot

resume
Defines what snapshot each model component should resume from

check_consistent()→ None
Checks that the configuration is internally consistent.

This checks whether all conduits are connected to existing components, that there’s an implementation for
every component, and that resources have been requested for each component.

If any of these requirements is false, this function will raise a RuntimeError with an explanation of the
problem.

dump(config: PartialConfiguration)→ str
Converts a yMMSL configuration to a string containing YAML.

Parameters config – The configuration to be saved to yMMSL.

Returns A yMMSL YAML description of the given document.

class ExecutionModel
Describes how to start a model component.

DIRECT = 1
Start directly on the allocated core(s), without MPI.

INTELMPI = 3
Start using Intel MPI’s mpirun.

OPENMPI = 2
Start using OpenMPI’s mpirun.

SRUNMPI = 4
Start MPI implementation using srun.

class Identifier(seq: Any)
A custom string type that represents an identifier.

An identifier may consist of upper- and lowercase characters, digits, and underscores.

class Implementation(name: Reference, modules: Union[str, List[str], None] = None, virtual_env:
Optional[pathlib.Path] = None, env: Optional[Dict[str, str]] = None, execu-
tion_model: ExecutionModel = <ExecutionModel.DIRECT: 1>, executable:
Optional[pathlib.Path] = None, args: Union[str, List[str], None] = None,
script: Union[str, List[str], None] = None, can_share_resources: bool =
True, keeps_state_for_next_use: KeepsStateForNextUse = <KeepsStateForNex-
tUse.NECESSARY: 1>)

Describes an installed implementation.

22 Chapter 3. API Reference

yMMSL Python bindings Documentation, Release 0.13.0

An Implementation normally has an executable and any other needed attributes, with script set to None.
You should specify a script only as a last resort, probably after getting some help from the authors of this library.
If a script is specified, all other attributes except for the name must be None.

For execution_model, the following values are supported:

direct The program will be executed directly. Use this for non-MPI programs.

openmpi For MPI programs that should be started using OpenMPI’s mpirun.

intelmpi For MPI programs that should be started using Intel MPI’s mpirun.

The can_share_resources attribute describes whether this implementation can share resources (cores)
with other components in a macro-micro coupling. Set this to False if the implementation does significant
computing inside of its time update loop after having sent messages on its O_I port(s) but before receiving
messages on its S port(s). In the unlikely case that it’s doing significant computing before receiving for F_INIT
or after sending its O_F messages, likewise set this to False.

Setting this to False unnecessarily will waste core hours, setting it to True incorrectly will slow down your
simulation.

name
Name of the implementation

modules
HPC software modules to load

virtual_env
Path to a virtual env to activate

env
Environment variables to set

execution_model
How to start the executable

executable
Full path to executable to run

args
Arguments to pass to the executable

script
A script that starts the implementation

can_share_resources
Whether this implementation can share resources (cores) with other components or not

keeps_state_for_next_use
Does this implementation keep state for the next iteration of the reuse loop. See
ImplementationState.

class KeepsStateForNextUse
Describes whether an implementation keeps internal state between iterations of the reuse loop.

See also Keeps state for next use.

HELPFUL = 3
The implementation has an internal state, though this could be regenerated. Doing so may be expensive.

NECESSARY = 1
The implementation has an internal state that is necessary for continuing the implementation.

3.1. API documentation 23

yMMSL Python bindings Documentation, Release 0.13.0

NO = 2
The implementation has no internal state.

load(source: Union[str, pathlib.Path, IO[Any]])→ PartialConfiguration
Loads a yMMSL document from a string or a file.

Parameters source – A string containing yMMSL data, a pathlib Path to a file containing yMMSL
data, or an open file-like object containing from which yMMSL data can be read.

Returns A PartialConfiguration object corresponding to the input data.

class Model(name: str, components: List[Component], conduits: Optional[List[Union[Conduit, Multicas-
tConduit]]] = None)

Describes a simulation model.

A model consists of a number of components connected by conduits.

Note that there may be no conduits, if there is only a single component. In that case, the conduits argument may
be omitted when constructing the object, and also from the YAML file; the conduits attribute will then be set to
an empty list.

name
The name by which this simulation model is known to the system.

components
A list of components making up the model.

conduits
A list of conduits connecting the components.

check_consistent()→ None
Checks that the model is internally consistent.

This checks whether all conduits are connected to existing components, and will raise a RuntimeError with
an explanation if one is not.

update(overlay: Model)→ None
Overlay another model definition on top of this one.

This updates the object with the name, components and conduits given in the argument. The name is
overwritten, and components are overwritten if they have the same name as an existing argument or else
added.

Conduits are added. If a receiving port was already connected, the old conduit is removed. If a sending
port was already connected, the new conduit is added and the sending port acts as a multicast port.

Parameters overlay – A Model definition to overlay on top of this one.

class ModelReference(name: str)
Describes a reference (by name) to a model.

name
The name of the simulation model this refers to.

class MPICoresResReq(name: Reference, mpi_processes: int, threads_per_mpi_process: int = 1)
Describes resources for simple MPI implementations.

This allocates individual cores or sets of cores on the same node for a given number of MPI processes per
instance.

name
Name of the component to configure.

mpi_processes
Number of MPI processes to start.

24 Chapter 3. API Reference

yMMSL Python bindings Documentation, Release 0.13.0

threads_per_mpi_process
Number of threads/cores per process.

class MPINodesResReq(name: Reference, nodes: int, mpi_processes_per_node: int,
threads_per_mpi_process: int = 1)

Describes resources for node based MPI implementations.

This allocates resources for an MPI process in terms of nodes and cores, processes and threads on them.

name
Name of the component to configure.

nodes
Number of nodes to reserve.

mpi_processes_per_node
Number of MPI processes to start on each node.

threads_per_mpi_process
Number of threads/cores per process.

class Operator
An operator of a component.

This is a combination of the Submodel Execution Loop operators, and operators for other components such as
mappers.

F_INIT = 1
Initialisation phase, before start of the SEL

NONE = 0
No operator

O_F = 5
Observation of final state, after the SEL

O_I = 2
State observation within the model’s main loop

S = 3
State update in the model’s main loop

allows_receiving()→ bool
Whether ports on this operator can receive.

allows_sending()→ bool
Whether ports on this operator can send.

class PartialConfiguration(model: Optional[ModelReference] = None, set-
tings: Optional[Settings] = None, implementations:
Union[List[Implementation], Dict[Reference, Implementation], None]
= None, resources: Union[Sequence[ResourceRequirements], Muta-
bleMapping[Reference, ResourceRequirements], None] = None, de-
scription: Optional[str] = None, checkpoints: Optional[Checkpoints]
= None, resume: Optional[Dict[Reference, pathlib.Path]] = None)

Top-level class for all information in a yMMSL file.

model
A model to run.

settings
Settings to run the model with.

3.1. API documentation 25

yMMSL Python bindings Documentation, Release 0.13.0

implementations
Implementations to use to run the model. Dictionary mapping implementation names (as References) to
Implementation objects.

resources
Resources to allocate for the model components. Dictionary mapping component names to Re-
sourceRequirements objects.

description
A human-readable description of the configuration.

checkpoints
Defines when each model component should create a snapshot

resume
Defines what snapshot each model component should resume from

as_configuration()→ Configuration
Converts to a full Configuration object.

This checks that this PartialConfiguration has all the pieces needed to run a simulation, and if so converts
it to a Configuration object.

Note that this doesn’t check references, just that there is a model, implementations and resources. For the
more extensive check, see Configuration.check_consistent().

Returns A corresponding Configuration.

Raises ValueError – If this configuration isn’t complete.

update(overlay: PartialConfiguration)→ None
Update this configuration with the given overlay.

This will update the model according to Model.update(), copy settings from overlay on top of the
current settings, overwrite implementations with the same name and add implementations with a new
name, and likewise for resources and resume. The description of the overlay is appended to the current
description. Checkpoints are updated according to Checkpoints.update().

Parameters overlay – A configuration to overlay onto this one.

class Port(name: Identifier, operator: Operator)
A port on a component.

Ports are used by component to send or receive messages on. They are connected by conduits to enable com-
munication between components.

name
The name of the port.

operator
The MMSL operator in which this port is used.

class Ports(f_init: Union[None, str, List[str]] = None, o_i: Union[None, str, List[str]] = None, s:
Union[None, str, List[str]] = None, o_f: Union[None, str, List[str]] = None)

Ports declaration for a component.

Ports objects compare for equality by value. The names may be specified as a list of strings, or separated by
spaces in a single string. If a particular operator has no associated ports, it may be omitted. For example:

ports:
f_init: # list of names
- a
- b

(continues on next page)

26 Chapter 3. API Reference

yMMSL Python bindings Documentation, Release 0.13.0

(continued from previous page)

o_i: c d # on one line, space-separated
s: e # single port

o_f omitted as it has no ports

f_init
The ports associated with the F_INIT operator.

o_i
The ports associated with the O_I operator

s
The ports associated with the S operator.

o_f
The ports associated with the O_F operator

all_ports()→ Iterable[Port]
Returns an iterable containing all ports.

operator(port_name: Identifier)→ Operator
Looks up the operator for a given port.

Parameters port_name – Name of the port to look up.

Returns The operator for that port.

Raises KeyError – If no port with this name was found.

port_names()→ Iterable[Identifier]
Returns an iterable containing the names of all ports.

class Reference(parts: Union[str, List[Union[Identifier, int]]])
A reference to an object in the MMSL execution model.

References in string form are written as either:

• an Identifier,

• a Reference followed by a period and an Identifier, or

• a Reference followed by an integer enclosed in square brackets.

In object form, they consist of a list of Identifiers and ints. The first list item is always an Identifier. For the
rest of the list, an Identifier represents a period operator with that argument, while an int represents the indexing
operator with that argument.

Reference objects act like a list of Identifiers and ints, you can get their length using len(), iterate through the
parts using a loop, and get sublists or individual items using []. Note that the sublist has to be a valid Reference,
so it cannot start with an int.

References can be compared for equality to each other or to a plain string, and they can be used as dictionary
keys. Reference objects are immutable (or they’re supposed to be anyway), so do not try to change any of the
elements. Instead, make a new Reference. Especially References that are used as dictionary keys must not be
modified, this will get your dictionary in a very confused state.

without_trailing_ints()→ Reference
Returns a copy of this Reference with trailing ints removed.

Examples

a.b.c[1][2] -> a.b.c a[1].b.c -> a[1].b.c a.b.c -> a.b.c a[1].b.c[2] -> a[1].b.c

3.1. API documentation 27

yMMSL Python bindings Documentation, Release 0.13.0

class ResourceRequirements(name: Reference)
Describes resources to allocate for components.

name
Name of the component to configure.

save(config: PartialConfiguration, target: Union[str, pathlib.Path, IO[Any]])→ None
Saves a yMMSL configuration to a file.

Parameters

• config – The configuration to save to yMMSL.

• target – The file to save to, either as a string containing a path, as a pathlib Path object,
or as an open file-like object.

class Settings(settings: Optional[Dict[str, Union[str, int, float, bool, List[float], List[List[float]], ya-
timl.util.bool_union_fix]]] = None)

Settings for doing an experiment.

An experiment is done by running a model with particular settings, for the submodel scales, model parameters
and any other configuration.

as_ordered_dict()→ collections.OrderedDict
Represent as a dictionary of plain built-in types.

Returns: A dictionary that uses only built-in types, containing the configuration.

copy()→ Settings
Makes a shallow copy of these settings and returns it.

ordered_items() → List[Tuple[Reference, Union[str, int, float, bool, List[float], List[List[float]],
yatiml.util.bool_union_fix]]]

Return settings as a list of tuples.

class ThreadedResReq(name: Reference, threads: int)
Describes resources for threaded implementations.

This includes singlethreaded and multithreaded implementations that do not support MPI. As many cores as
specified will be allocated on a single node, for each instance.

name
Name of the component to configure.

threads
Number of threads/cores per instance.

28 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

29

yMMSL Python bindings Documentation, Release 0.13.0

30 Chapter 4. Indices and tables

Python Module Index

y
ymmsl, 19

31

yMMSL Python bindings Documentation, Release 0.13.0

32 Python Module Index

Index

A
all_ports() (Ports method), 27
allows_receiving() (Operator method), 25
allows_sending() (Operator method), 25
args (Implementation attribute), 23
as_configuration() (PartialConfiguration

method), 26
as_ordered_dict() (Settings method), 28
at (CheckpointAtRule attribute), 20
at_end (Checkpoints attribute), 20

C
can_share_resources (Implementation attribute),

23
check_consistent() (Configuration method), 22
check_consistent() (Model method), 24
CheckpointAtRule (class in ymmsl), 19
CheckpointRangeRule (class in ymmsl), 19
CheckpointRule (class in ymmsl), 19
Checkpoints (class in ymmsl), 20
checkpoints (Configuration attribute), 22
checkpoints (PartialConfiguration attribute), 26
Component (class in ymmsl), 20
components (Model attribute), 24
Conduit (class in ymmsl), 20
conduits (Model attribute), 24
Configuration (class in ymmsl), 21
copy() (Settings method), 28

D
description (Configuration attribute), 22
description (PartialConfiguration attribute), 26
DIRECT (ExecutionModel attribute), 22
dump() (in module ymmsl), 22

E
env (Implementation attribute), 23
every (CheckpointRangeRule attribute), 19
executable (Implementation attribute), 23

execution_model (Implementation attribute), 23
ExecutionModel (class in ymmsl), 22

F
F_INIT (Operator attribute), 25
f_init (Ports attribute), 27

H
HELPFUL (KeepsStateForNextUse attribute), 23

I
Identifier (class in ymmsl), 22
Implementation (class in ymmsl), 22
implementation (Component attribute), 20
implementations (Configuration attribute), 21
implementations (PartialConfiguration attribute),

25
instances() (Component method), 20
INTELMPI (ExecutionModel attribute), 22

K
keeps_state_for_next_use (Implementation at-

tribute), 23
KeepsStateForNextUse (class in ymmsl), 23

L
load() (in module ymmsl), 24

M
Model (class in ymmsl), 24
model (Configuration attribute), 21
model (PartialConfiguration attribute), 25
ModelReference (class in ymmsl), 24
modules (Implementation attribute), 23
mpi_processes (MPICoresResReq attribute), 24
mpi_processes_per_node (MPINodesResReq at-

tribute), 25
MPICoresResReq (class in ymmsl), 24
MPINodesResReq (class in ymmsl), 25

33

yMMSL Python bindings Documentation, Release 0.13.0

multiplicity (Component attribute), 20

N
name (Component attribute), 20
name (Implementation attribute), 23
name (Model attribute), 24
name (ModelReference attribute), 24
name (MPICoresResReq attribute), 24
name (MPINodesResReq attribute), 25
name (Port attribute), 26
name (ResourceRequirements attribute), 28
name (ThreadedResReq attribute), 28
NECESSARY (KeepsStateForNextUse attribute), 23
NO (KeepsStateForNextUse attribute), 23
nodes (MPINodesResReq attribute), 25
NONE (Operator attribute), 25

O
O_F (Operator attribute), 25
o_f (Ports attribute), 27
O_I (Operator attribute), 25
o_i (Ports attribute), 27
OPENMPI (ExecutionModel attribute), 22
Operator (class in ymmsl), 25
operator (Port attribute), 26
operator() (Ports method), 27
ordered_items() (Settings method), 28

P
PartialConfiguration (class in ymmsl), 25
Port (class in ymmsl), 26
port_names() (Ports method), 27
Ports (class in ymmsl), 26
ports (Component attribute), 20

R
receiver (Conduit attribute), 21
receiving_component() (Conduit method), 21
receiving_port() (Conduit method), 21
receiving_slot() (Conduit method), 21
Reference (class in ymmsl), 27
ResourceRequirements (class in ymmsl), 27
resources (Configuration attribute), 22
resources (PartialConfiguration attribute), 26
resume (Configuration attribute), 22
resume (PartialConfiguration attribute), 26

S
S (Operator attribute), 25
s (Ports attribute), 27
save() (in module ymmsl), 28
script (Implementation attribute), 23
sender (Conduit attribute), 21

sending_component() (Conduit method), 21
sending_port() (Conduit method), 21
sending_slot() (Conduit method), 21
Settings (class in ymmsl), 28
settings (Configuration attribute), 21
settings (PartialConfiguration attribute), 25
simulation_time (Checkpoints attribute), 20
SRUNMPI (ExecutionModel attribute), 22
start (CheckpointRangeRule attribute), 19
stop (CheckpointRangeRule attribute), 19

T
ThreadedResReq (class in ymmsl), 28
threads (ThreadedResReq attribute), 28
threads_per_mpi_process (MPICoresResReq at-

tribute), 25
threads_per_mpi_process (MPINodesResReq at-

tribute), 25

U
update() (Checkpoints method), 20
update() (Model method), 24
update() (PartialConfiguration method), 26

V
virtual_env (Implementation attribute), 23

W
wallclock_time (Checkpoints attribute), 20
without_trailing_ints() (Reference method),

27

Y
ymmsl (module), 19

34 Index

	Overview
	Installation
	Reading yMMSL files
	Writing yMMSL files

	Usage
	Models
	Settings
	Implementations
	Resources
	Checkpoints
	Examples

	API Reference
	API documentation

	Indices and tables
	Python Module Index
	Index

